Stripe and superconducting order competing in the Hubbard model on a square lattice studied by a combined variational Monte Carlo and tensor network method

The long-studied Hubbard model is one of the simplest models of copper-oxide superconductors. However, the connection between the model and the experimental phase diagram is still under debate, in particular regarding the existence and extent of the d-wave superconducting phase. Recent rapid progres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-11, Vol.98 (20), p.205132, Article 205132
Hauptverfasser: Darmawan, Andrew S., Nomura, Yusuke, Yamaji, Youhei, Imada, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The long-studied Hubbard model is one of the simplest models of copper-oxide superconductors. However, the connection between the model and the experimental phase diagram is still under debate, in particular regarding the existence and extent of the d-wave superconducting phase. Recent rapid progress in improving the accuracy of numerical solvers has opened a way to answer this question reliably. Here, we study the hole-doping concentration (δ) dependence of the Hubbard model in the ground states on a square lattice at strong coupling U/t=10, for the on-site interaction U and the transfer t, using a variational Monte Carlo method. The method, which combines tensor network and Lanczos methods on top of Pfaffian wave functions, reveals a rich phase diagram, in which many orders compete severely and degenerate within the energy range of 0.01t. We have identified distinct phases including a uniform d-wave superconducting phase for 0.17≲δ≲0.22 and a stripe charge/spin ordered phase for δ≲0.17 with the stripe period depending on δ, together with presumable spatially coexisting antiferromagnetic and stripe order for δ≲0.07 and coexisting stripe and d-wave superconductivity for 0.07≲δ≲0.17. The present, improved method revealed a wider region of a charge uniform superconducting phase than the previous studies and shows a qualitative similarity to the phase diagram of the cuprate superconductors. The superconducting order parameter is largest at doping of around δ=0.17 in the ground state, which undergoes phase transitions from an inhomogeneous to a uniform state.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.205132