Plasmon-pole approximation for many-body effects in extrinsic graphene
We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic graphene as a function of doping density within analytical approximations to the GW random phase approximation (GW-RPA). Our calculated self-energy shows excellent quantitative agreement with...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-11, Vol.98 (19), Article 195140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic graphene as a function of doping density within analytical approximations to the GW random phase approximation (GW-RPA). Our calculated self-energy shows excellent quantitative agreement with the corresponding full GW-RPA calculation results in spite of the simplicity of the PPA, establishing the general validity of the plasmon-pole approximation scheme. We also provide a comparison between the PPA and the hydrodynamic approximation in graphene, and comment on the experimental implications of our findings. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.195140 |