Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms

We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, alo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2019-04, Vol.181 (1), p.244-278
Hauptverfasser: Ochs, Peter, Fadili, Jalal, Brox, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 1
container_start_page 244
container_title Journal of optimization theory and applications
container_volume 181
creator Ochs, Peter
Fadili, Jalal
Brox, Thomas
description We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, gradient descent, forward–backward splitting, ProxDescent, without the common requirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions), replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and nonlinear inverse problems in signal/image processing and machine learning.
doi_str_mv 10.1007/s10957-018-01452-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2150946680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150946680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4e6d41a33f24e50baf8622a99835758e88e2a2a2fc2360452835624986031dd63</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrE2bC2Y8fhVirKQ6Vc6NkyidO6auxip7y-HrdB4oZWq31oZlY7CJ0TuCQAxVUkUPICA5Epc04xHKAB4QXDVBbyEA0AKMWMsvIYncS4AoBSFvkAPc68w7H1vltmu7by7t18ZjfBLFrtsifrbGu_dWe9u87mzja22g-ZdnU2Mx_ZaL3wwXbLNp6io0avozn7rUM0n9y-jO_x9PnuYTya4opJ3uHciDonmrGG5obDq26koFSXpWS84NJIaahO0VSUCUi_pL2geSkFMFLXgg3RRa-7Cf5ta2KnVn4bXDqpKOFQ5kJISCjao6rgYwymUZtgWx2-FAG180z1nqnkmdp7pnYk1pNiAruFCX_S_7B-AO2BbUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150946680</pqid></control><display><type>article</type><title>Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Ochs, Peter ; Fadili, Jalal ; Brox, Thomas</creator><creatorcontrib>Ochs, Peter ; Fadili, Jalal ; Brox, Thomas</creatorcontrib><description>We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, gradient descent, forward–backward splitting, ProxDescent, without the common requirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions), replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and nonlinear inverse problems in signal/image processing and machine learning.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-018-01452-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational geometry ; Convexity ; Engineering ; Euclidean geometry ; Image processing ; Inverse problems ; Legendre functions ; Machine learning ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Signal processing ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2019-04, Vol.181 (1), p.244-278</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4e6d41a33f24e50baf8622a99835758e88e2a2a2fc2360452835624986031dd63</citedby><cites>FETCH-LOGICAL-c385t-4e6d41a33f24e50baf8622a99835758e88e2a2a2fc2360452835624986031dd63</cites><orcidid>0000-0002-4880-7511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-018-01452-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-018-01452-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ochs, Peter</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><title>Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, gradient descent, forward–backward splitting, ProxDescent, without the common requirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions), replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and nonlinear inverse problems in signal/image processing and machine learning.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Euclidean geometry</subject><subject>Image processing</subject><subject>Inverse problems</subject><subject>Legendre functions</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Signal processing</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrE2bC2Y8fhVirKQ6Vc6NkyidO6auxip7y-HrdB4oZWq31oZlY7CJ0TuCQAxVUkUPICA5Epc04xHKAB4QXDVBbyEA0AKMWMsvIYncS4AoBSFvkAPc68w7H1vltmu7by7t18ZjfBLFrtsifrbGu_dWe9u87mzja22g-ZdnU2Mx_ZaL3wwXbLNp6io0avozn7rUM0n9y-jO_x9PnuYTya4opJ3uHciDonmrGG5obDq26koFSXpWS84NJIaahO0VSUCUi_pL2geSkFMFLXgg3RRa-7Cf5ta2KnVn4bXDqpKOFQ5kJISCjao6rgYwymUZtgWx2-FAG180z1nqnkmdp7pnYk1pNiAruFCX_S_7B-AO2BbUA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ochs, Peter</creator><creator>Fadili, Jalal</creator><creator>Brox, Thomas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4880-7511</orcidid></search><sort><creationdate>20190401</creationdate><title>Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms</title><author>Ochs, Peter ; Fadili, Jalal ; Brox, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4e6d41a33f24e50baf8622a99835758e88e2a2a2fc2360452835624986031dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Euclidean geometry</topic><topic>Image processing</topic><topic>Inverse problems</topic><topic>Legendre functions</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Signal processing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochs, Peter</creatorcontrib><creatorcontrib>Fadili, Jalal</creatorcontrib><creatorcontrib>Brox, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochs, Peter</au><au>Fadili, Jalal</au><au>Brox, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>181</volume><issue>1</issue><spage>244</spage><epage>278</epage><pages>244-278</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, gradient descent, forward–backward splitting, ProxDescent, without the common requirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions), replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and nonlinear inverse problems in signal/image processing and machine learning.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-018-01452-0</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-4880-7511</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2019-04, Vol.181 (1), p.244-278
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2150946680
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational geometry
Convexity
Engineering
Euclidean geometry
Image processing
Inverse problems
Legendre functions
Machine learning
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Signal processing
Theory of Computation
title Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-smooth%20Non-convex%20Bregman%20Minimization:%20Unification%20and%20New%20Algorithms&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Ochs,%20Peter&rft.date=2019-04-01&rft.volume=181&rft.issue=1&rft.spage=244&rft.epage=278&rft.pages=244-278&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-018-01452-0&rft_dat=%3Cproquest_cross%3E2150946680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150946680&rft_id=info:pmid/&rfr_iscdi=true