Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms
We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, alo...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2019-04, Vol.181 (1), p.244-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove (subsequential) convergence to a stationary point under weak assumptions on the growth of the model function error. Special instances of the algorithm with a Euclidean distance function are, for example, gradient descent, forward–backward splitting, ProxDescent, without the common requirement of a “Lipschitz continuous gradient”. In addition, we consider a broad class of Bregman distance functions (generated by Legendre functions), replacing the Euclidean distance. The algorithm has a wide range of applications including many linear and nonlinear inverse problems in signal/image processing and machine learning. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-018-01452-0 |