Robot nonlinear control for Unmanned Aerial Vehicles’ multitasking

Purpose This paper aims to present a unified motion control scheme for quadcopters which not only solves the point stabilization and trajectory tracking problems but also the path following problem. Design/methodology/approach The control problem is solved based on the kinematic model of the unmanne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assembly automation 2018-12, Vol.38 (5), p.645-660
Hauptverfasser: Andaluz, Víctor H., Gallardo, Cristian M., Chicaiza, Fernando A., Carvajal, Christian P., Morales, José, Cuzco, Giovanny, Morales, Vicente, Vaca, Byron E., Samaniego, Nicolay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to present a unified motion control scheme for quadcopters which not only solves the point stabilization and trajectory tracking problems but also the path following problem. Design/methodology/approach The control problem is solved based on the kinematic model of the unmanned aerial vehicles (UAV). Next, a dynamic compensation controller is considered through of a quadcopter-inner-loop system to independently track four velocity commands: forward, lateral, up/downward and heading rate. Stability and robustness of the whole control system are proved through the Lyapunov’s method. To evaluate the controller’s performance, a multi-user application which allows bilateral communication between a ground station and the Phantom 3 PRO quadrotor is developed. Findings The performance of the proposed unified controller is shown through real experiments for the different motion control objectives: point stabilization, trajectory tracking and path following. The experiments confirm the capability of the unified controller to solve different motion problems by an adequate selection of the control references. Originality/value This work proposes the design of three types of motion controllers, which can be switched to comply a task in outdoor. Based on the software development kit provided by the company DJI, an application to get and send data to the UAV is developed. By means of this application, the three tasks are tested and the robustness of the controllers is proved.
ISSN:0144-5154
2754-6969
1758-4078
2754-6977
DOI:10.1108/AA-02-2018-036