Multiplicity of Positive Solutions to the Boundary-Value Problems for Fractional Laplacians

For the problem (−Δ) s u = u q−1 in the annulus Ω R = B R +1 \ B R ∈ ℝ n , a so-called “multiplicity effect” is established: for each N ∈ ℕ there exists R 0 such that for all R ≥ R 0 this problem has at least N different positive solutions. (−Δ) s in this problem stands either for Navier-type or for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019, Vol.236 (4), p.446-460
1. Verfasser: Ustinov, N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the problem (−Δ) s u = u q−1 in the annulus Ω R = B R +1 \ B R ∈ ℝ n , a so-called “multiplicity effect” is established: for each N ∈ ℕ there exists R 0 such that for all R ≥ R 0 this problem has at least N different positive solutions. (−Δ) s in this problem stands either for Navier-type or for Dirichlet-type fractional Laplacian. Similar results were proved earlier for the equations with the usual Laplace operator and with the p-Laplacian operator.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-4124-2