Atomic orbitals revisited: generalized hydrogen-like basis sets for 2nd-row elements

In the present work, we revisit the problem of atomic orbitals from the positions mostly dictated by semiempirical approaches in quantum chemistry. To construct basis set, having proper nodal structure and simple functional form of orbitals and representing atomic properties with reasonable accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical chemistry accounts 2019, Vol.138 (1), p.1-11, Article 9
Hauptverfasser: Popov, Ilya V., Tchougréeff, Andrei L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, we revisit the problem of atomic orbitals from the positions mostly dictated by semiempirical approaches in quantum chemistry. To construct basis set, having proper nodal structure and simple functional form of orbitals and representing atomic properties with reasonable accuracy, authors propose an Ansatz based on gradual improvement of hydrogen atomic orbitals. According to it, several basis sets with different numbers of variable parameters are considered and forms of orbitals are obtained for the 2nd-row elements either by minimization of their ground state energy (direct problem) or by extracting from atomic spectra (inverse problem). It is shown that so-derived three- and four-parametric basis sets provide accurate description of atomic properties, being, however, substantially provident for computational requirements and, what is more important, simple to handle in analytic models of quantum chemistry. Since the discussed Ansatz allows a generalization for heavier atoms, our results may be considered not only as a solution for light elements, but also as a proof of concept with possible further extension to a wider range of elements.
ISSN:1432-881X
1432-2234
DOI:10.1007/s00214-018-2386-x