Defining and Predicting Heat Waves in Bangladesh
This paper proposes a heat-wave definition for Bangladesh that could be used to trigger preparedness measures in a heat early warning system (HEWS) and explores the climate mechanisms associated with heat waves. A HEWS requires a definition of heat waves that is both related to human health outcomes...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2017-10, Vol.56 (10), p.2653-2670 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a heat-wave definition for Bangladesh that could be used to trigger preparedness measures in a heat early warning system (HEWS) and explores the climate mechanisms associated with heat waves. A HEWS requires a definition of heat waves that is both related to human health outcomes and forecastable. No such definition has been developed for Bangladesh. Using a generalized additive regression model, a heat-wave definition is proposed that requires elevated minimum and maximum daily temperatures over the 95th percentile for 3 consecutive days, confirming the importance of nighttime conditions for health impacts. By this definition, death rates increase by about 20% during heat waves; this result can be used as an argument for public-health interventions to prevent heat-related deaths. Furthermore, predictability of these heat waves exists from weather to seasonal time scales, offering opportunities for a range of preparedness measures. Heat waves are associated with an absence of normal premonsoonal rainfall brought about by anomalously strong low-level westerly winds and weak southerlies, detectable up to approximately 10 days in advance. This circulation pattern occurs over a background of drier-than-normal conditions, with below-average soil moisture and precipitation throughout the heat-wave season from April to June. Low soil moisture increases the odds of heat-wave occurrence for 10–30 days, indicating that subseasonal forecasts of heat-wave risk may be possible by monitoring soil-moisture conditions. |
---|---|
ISSN: | 1558-8424 1558-8432 |
DOI: | 10.1175/jamc-d-17-0035.1 |