A Time-Varying Autoregressive Model for Characterizing Nonstationary Processes

This letter presents a time-varying autoregressive (TVAR) model aiming to characterize nonstationary behaviors often observed in real-world processes, which cannot be properly described by autoregressive processes such as first-order Markov and random-walk models. Specifically, general model express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2019-01, Vol.26 (1), p.134-138
Hauptverfasser: Baptista de Souza, Douglas, Kuhn, Eduardo Vinicius, Seara, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a time-varying autoregressive (TVAR) model aiming to characterize nonstationary behaviors often observed in real-world processes, which cannot be properly described by autoregressive processes such as first-order Markov and random-walk models. Specifically, general model expressions for the mean vector and covariance matrix of the TVAR model are firstly derived. Then, such expressions are used to guide the design of two special setups for the TVAR model. The capability of the developed model to reproduce important nonstationary behaviors is verified mathematically and through simulations.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2018.2880086