Short fluorodeoxyuridine exposure of different human glioblastoma lines induces high-level accumulation of S-phase cells that avidly incorporate 125I-iododeoxyuridine

Radio-iododeoxyuridine (IdUrd) is a potential Auger radiation therapy agent incorporated into DNA during the synthesis phase. In this study we sought to optimise S-phase targeting by modulating cellular cycling and radio-IdUrd DNA incorporation using short non-toxic fluorodeoxyuridine (FdUrd) incuba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2006-05, Vol.33 (5), p.613-620
Hauptverfasser: Perillo-Adamer, Florence, Delaloye, Angelika Bischof, Genton, Céline S, Schaffland, Andreas O, Dupertuis, Yves M, Buchegger, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radio-iododeoxyuridine (IdUrd) is a potential Auger radiation therapy agent incorporated into DNA during the synthesis phase. In this study we sought to optimise S-phase targeting by modulating cellular cycling and radio-IdUrd DNA incorporation using short non-toxic fluorodeoxyuridine (FdUrd) incubations. Three human glioblastoma cell lines with different p53 expression were pre-treated with various FdUrd conditions. After different intervals, (125)I-IdUrd DNA incorporation was measured. Fluorescence-activated cell sorter cell cycle analysis was performed after identical intervals post FdUrd pre-treatment. The highest increase in (125)I-IdUrd DNA incorporation was induced by 1-h incubation with 1 muM FdUrd. Increase in radio-IdUrd DNA incorporation was greatest 16-24 h after FdUrd, reaching factors of >or=7.5 over baseline incorporation in the three cell lines. Furthermore, cell synchronisation in S phase was observed with a peak of >or=69.5% in the three cell lines at 16 and 24 h post FdUrd, corresponding to an increase of 2.5-4.1 over baseline. FdUrd-induced thymidine synthesis inhibition led to S-phase accumulation that was maximal after an interval of 16-24 h and time-correlated with the highest radio-IdUrd DNA incorporation. These observations might allow the rational design of an Auger radiation therapy targeting a maximal number of S-phase cells in single treatment cycles.
ISSN:1619-7070
1619-7089
DOI:10.1007/s00259-005-0009-y