Finite type knot invariants and the calculus of functors

We associate a Taylor tower supplied by the calculus of the embedding functor to the space of long knots and study its cohomology spectral sequence. The combinatorics of the spectral sequence along the line of total degree zero leads to chord diagrams with relations as in finite type knot theory. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2006-01, Vol.142 (1), p.222-250
1. Verfasser: Volic, Ismar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We associate a Taylor tower supplied by the calculus of the embedding functor to the space of long knots and study its cohomology spectral sequence. The combinatorics of the spectral sequence along the line of total degree zero leads to chord diagrams with relations as in finite type knot theory. We show that the spectral sequence collapses along this line and that the Taylor tower represents a universal finite type knot invariant.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X05001648