Pfaffians, the $G$-signature theorem and Galois Hodge discriminants
Let $G$ be a finite group acting freely on a smooth projective scheme $X$ over a locally compact field of characteristic 0. We show that the $\varepsilon_0$-constants associated to symplectic representations $V$ of $G$ and the action of $G$ on $X$ may be determined from Pfaffian invariants associate...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2007-09, Vol.143 (5), p.1213-1254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a finite group acting freely on a smooth projective scheme $X$ over a locally compact field of characteristic 0. We show that the $\varepsilon_0$-constants associated to symplectic representations $V$ of $G$ and the action of $G$ on $X$ may be determined from Pfaffian invariants associated to duality pairings on Hodge cohomology. We also use such Pfaffian invariants, along with equivariant Arakelov Euler characteristics, to determine hermitian Euler characteristics associated to tame actions of finite groups on regular projective schemes over $\mathbb{Z}$. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X07002758 |