Pfaffians, the $G$-signature theorem and Galois Hodge discriminants

Let $G$ be a finite group acting freely on a smooth projective scheme $X$ over a locally compact field of characteristic 0. We show that the $\varepsilon_0$-constants associated to symplectic representations $V$ of $G$ and the action of $G$ on $X$ may be determined from Pfaffian invariants associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2007-09, Vol.143 (5), p.1213-1254
Hauptverfasser: Chinburg, Ted, Pappas, Georgios, Taylor, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a finite group acting freely on a smooth projective scheme $X$ over a locally compact field of characteristic 0. We show that the $\varepsilon_0$-constants associated to symplectic representations $V$ of $G$ and the action of $G$ on $X$ may be determined from Pfaffian invariants associated to duality pairings on Hodge cohomology. We also use such Pfaffian invariants, along with equivariant Arakelov Euler characteristics, to determine hermitian Euler characteristics associated to tame actions of finite groups on regular projective schemes over $\mathbb{Z}$.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X07002758