A counterexample to King's conjecture

King's conjecture states that on every smooth complete toric variety $X$ there exists a strongly exceptional collection which generates the bounded derived category of $X$ and which consists of line bundles. We give a counterexample to this conjecture. This example is just the Hirzebruch surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2006-11, Vol.142 (6), p.1507-1521
Hauptverfasser: Hille, Lutz, Perling, Markus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:King's conjecture states that on every smooth complete toric variety $X$ there exists a strongly exceptional collection which generates the bounded derived category of $X$ and which consists of line bundles. We give a counterexample to this conjecture. This example is just the Hirzebruch surface $\mathbb{F}_2$ iteratively blown up three times, and we show by explicit computation of cohomology vanishing that there exist no strongly exceptional sequences of length 7 which consist of line bundles.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X06002260