Multiple $\zeta$-motives and moduli spaces $\overline{\mathcal{M}}_{0,n}
We give a natural construction of framed mixed Tate motives unramified over $\mathbb{Z}$ whose periods are the multiple $\zeta$-values. Namely, for each convergent multiple $\zeta$-value we define two boundary divisors A and B in the moduli space $\overline{\mathcal{M}}_{0,n+3}$ of stable curves of...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2004-01, Vol.140 (1), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a natural construction of framed mixed Tate motives unramified over $\mathbb{Z}$ whose periods are the multiple $\zeta$-values. Namely, for each convergent multiple $\zeta$-value we define two boundary divisors A and B in the moduli space $\overline{\mathcal{M}}_{0,n+3}$ of stable curves of genus zero. The corresponding multiple zeta-motive is the nth cohomology of the pair $(\overline{\mathcal{M}}_{0,n+3}-A,B)$. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X03000125 |