Multiple $\zeta$-motives and moduli spaces $\overline{\mathcal{M}}_{0,n}

We give a natural construction of framed mixed Tate motives unramified over $\mathbb{Z}$ whose periods are the multiple $\zeta$-values. Namely, for each convergent multiple $\zeta$-value we define two boundary divisors A and B in the moduli space $\overline{\mathcal{M}}_{0,n+3}$ of stable curves of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2004-01, Vol.140 (1), p.1-14
Hauptverfasser: Goncharov, A. B., Manin, Yu. I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a natural construction of framed mixed Tate motives unramified over $\mathbb{Z}$ whose periods are the multiple $\zeta$-values. Namely, for each convergent multiple $\zeta$-value we define two boundary divisors A and B in the moduli space $\overline{\mathcal{M}}_{0,n+3}$ of stable curves of genus zero. The corresponding multiple zeta-motive is the nth cohomology of the pair $(\overline{\mathcal{M}}_{0,n+3}-A,B)$.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X03000125