mathcal P$-adic modular forms over Shimura curves over totally real fields

We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2004-03, Vol.140 (2), p.359-395
1. Verfasser: Kassaei, Payman L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 2
container_start_page 359
container_title Compositio mathematica
container_volume 140
creator Kassaei, Payman L
description We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight.
doi_str_mv 10.1112/S0010437X03000150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214609737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X03000150</cupid><sourcerecordid>1395229721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2040-ca02fbdc786d0ef0cba113750c3ab542777598cc82a191bb9b934a72860133833</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG9BvFZnkrZJj7L4F0FhFbyVSZq6XVqzJu3Cfnu77IIH8TTDvPd7A4-xc4QrRBTXcwCEVKoPkDCuGRywCWYKkkyn-SGbbOVkqx-zkxiXo0dooSfsqaN-Yanlr5cJVY3lna-GlgKvfegi92sX-HzRdEMgboewdvtb73tq2w0PbmTrxrVVPGVHNbXRne3nlL3f3b7NHpLnl_vH2c1zYgWkkFgCUZvKKp1X4GqwhhClysBKMlkqlFJZoa3VgrBAYwpTyJSU0DmglFrKKbvY5a6C_x5c7MulH8LX-LIUmOZQKKlGE-5MNvgYg6vLVWg6CpsSodw2Vv5pbGTknqHOhKb6dL_J_1M_5sBr6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214609737</pqid></control><display><type>article</type><title>mathcal P$-adic modular forms over Shimura curves over totally real fields</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Kassaei, Payman L</creator><creatorcontrib>Kassaei, Payman L</creatorcontrib><description>We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X03000150</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><ispartof>Compositio mathematica, 2004-03, Vol.140 (2), p.359-395</ispartof><rights>Foundation Compositio Mathematica 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2040-ca02fbdc786d0ef0cba113750c3ab542777598cc82a191bb9b934a72860133833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X03000150/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids></links><search><creatorcontrib>Kassaei, Payman L</creatorcontrib><title>mathcal P$-adic modular forms over Shimura curves over totally real fields</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight.</description><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG9BvFZnkrZJj7L4F0FhFbyVSZq6XVqzJu3Cfnu77IIH8TTDvPd7A4-xc4QrRBTXcwCEVKoPkDCuGRywCWYKkkyn-SGbbOVkqx-zkxiXo0dooSfsqaN-Yanlr5cJVY3lna-GlgKvfegi92sX-HzRdEMgboewdvtb73tq2w0PbmTrxrVVPGVHNbXRne3nlL3f3b7NHpLnl_vH2c1zYgWkkFgCUZvKKp1X4GqwhhClysBKMlkqlFJZoa3VgrBAYwpTyJSU0DmglFrKKbvY5a6C_x5c7MulH8LX-LIUmOZQKKlGE-5MNvgYg6vLVWg6CpsSodw2Vv5pbGTknqHOhKb6dL_J_1M_5sBr6w</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Kassaei, Payman L</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200403</creationdate><title>mathcal P$-adic modular forms over Shimura curves over totally real fields</title><author>Kassaei, Payman L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2040-ca02fbdc786d0ef0cba113750c3ab542777598cc82a191bb9b934a72860133833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kassaei, Payman L</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kassaei, Payman L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mathcal P$-adic modular forms over Shimura curves over totally real fields</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2004-03</date><risdate>2004</risdate><volume>140</volume><issue>2</issue><spage>359</spage><epage>395</epage><pages>359-395</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X03000150</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2004-03, Vol.140 (2), p.359-395
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_214609737
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
title mathcal P$-adic modular forms over Shimura curves over totally real fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mathcal%20P$-adic%20modular%20forms%20over%20Shimura%20curves%20over%20totally%20real%20fields&rft.jtitle=Compositio%20mathematica&rft.au=Kassaei,%20Payman%20L&rft.date=2004-03&rft.volume=140&rft.issue=2&rft.spage=359&rft.epage=395&rft.pages=359-395&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X03000150&rft_dat=%3Cproquest_cross%3E1395229721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214609737&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X03000150&rfr_iscdi=true