mathcal P$-adic modular forms over Shimura curves over totally real fields

We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2004-03, Vol.140 (2), p.359-395
1. Verfasser: Kassaei, Payman L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X03000150