mathcal P$-adic modular forms over Shimura curves over totally real fields
We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2004-03, Vol.140 (2), p.359-395 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We set up the basic theory of $\mathcal P$-adic modular forms over certain unitary PEL Shimura curves M′K′. For any PEL abelian scheme classified by M′K′, which is not ‘too supersingular’, we construct a canonical subgroup which is essentially a lifting of the kernel of Frobenius from characteristic p. Using this construction we define the U and Frob operators in this context. Following Coleman, we study the spectral theory of the action of U on families of overconvergent $\mathcal P$-adic modular forms and prove that the dimension of overconvergent eigenforms of U of a given slope is a locally constant function of the weight. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X03000150 |