The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)
We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2003-12, Vol.139 (3), p.263-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 3 |
container_start_page | 263 |
container_title | Compositio mathematica |
container_volume | 139 |
creator | Avanzi, Roberto M. Zannier, Umberto M. |
description | We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K. |
doi_str_mv | 10.1023/B:COMP.0000018136.23898.65 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214605370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1023_B_COMP_0000018136_23898_65</cupid><sourcerecordid>1395227761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</originalsourceid><addsrcrecordid>eNqNUE1PwkAQ3RhNRPQ_bDhBYut-dD9K9AAE1ASDMZiU02bbbrUEKOy2B_-9WzDh6lzmZd57M5MHQA-jECNCH8bDyeLtPURtYYkpDwmVsQw5uwAdzAQKmIz4Jeh4GgURFck1uHFu7eVEEtkBo-W3gdNDo-uy2sGinwzgk2-rASx38OM41Rs4a3ZZCx1MPJ3068E9XHm08ugWXBV648zdX--Cz9l0OXkJ5ovn18loHmQRx3UQiRRpE8msyNNUG8biNNdRjoQQcYpEjHmGWMEIFYIikWWaaCwkYYJhkhsR0y7onfbubXVojKvVumqs_84pgiOOGBXIi4YnUWYr56wp1N6WW21_FEaqTUyNVZuYOiemjokpzrz58c-st6kt8y9zPvEP-y_MsWxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214605370</pqid></control><display><type>article</type><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Avanzi, Roberto M. ; Zannier, Umberto M.</creator><creatorcontrib>Avanzi, Roberto M. ; Zannier, Umberto M.</creatorcontrib><description>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1023/B:COMP.0000018136.23898.65</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><ispartof>Compositio mathematica, 2003-12, Vol.139 (3), p.263-295</ispartof><rights>2003 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X03100735/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27915,27916,55619</link.rule.ids></links><search><creatorcontrib>Avanzi, Roberto M.</creatorcontrib><creatorcontrib>Zannier, Umberto M.</creatorcontrib><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</description><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUE1PwkAQ3RhNRPQ_bDhBYut-dD9K9AAE1ASDMZiU02bbbrUEKOy2B_-9WzDh6lzmZd57M5MHQA-jECNCH8bDyeLtPURtYYkpDwmVsQw5uwAdzAQKmIz4Jeh4GgURFck1uHFu7eVEEtkBo-W3gdNDo-uy2sGinwzgk2-rASx38OM41Rs4a3ZZCx1MPJ3068E9XHm08ugWXBV648zdX--Cz9l0OXkJ5ovn18loHmQRx3UQiRRpE8msyNNUG8biNNdRjoQQcYpEjHmGWMEIFYIikWWaaCwkYYJhkhsR0y7onfbubXVojKvVumqs_84pgiOOGBXIi4YnUWYr56wp1N6WW21_FEaqTUyNVZuYOiemjokpzrz58c-st6kt8y9zPvEP-y_MsWxn</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Avanzi, Roberto M.</creator><creator>Zannier, Umberto M.</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200312</creationdate><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><author>Avanzi, Roberto M. ; Zannier, Umberto M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avanzi, Roberto M.</creatorcontrib><creatorcontrib>Zannier, Umberto M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avanzi, Roberto M.</au><au>Zannier, Umberto M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2003-12</date><risdate>2003</risdate><volume>139</volume><issue>3</issue><spage>263</spage><epage>295</epage><pages>263-295</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1023/B:COMP.0000018136.23898.65</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2003-12, Vol.139 (3), p.263-295 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_214605370 |
source | EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
title | The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Equation%20f(X)%20=%20f(Y)%20in%20Rational%20Functions%20X%20=%20X(t),%20Y%20=%20Y(t)&rft.jtitle=Compositio%20mathematica&rft.au=Avanzi,%20Roberto%20M.&rft.date=2003-12&rft.volume=139&rft.issue=3&rft.spage=263&rft.epage=295&rft.pages=263-295&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1023/B:COMP.0000018136.23898.65&rft_dat=%3Cproquest_cross%3E1395227761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214605370&rft_id=info:pmid/&rft_cupid=10_1023_B_COMP_0000018136_23898_65&rfr_iscdi=true |