The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)

We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2003-12, Vol.139 (3), p.263-295
Hauptverfasser: Avanzi, Roberto M., Zannier, Umberto M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 3
container_start_page 263
container_title Compositio mathematica
container_volume 139
creator Avanzi, Roberto M.
Zannier, Umberto M.
description We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.
doi_str_mv 10.1023/B:COMP.0000018136.23898.65
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214605370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1023_B_COMP_0000018136_23898_65</cupid><sourcerecordid>1395227761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</originalsourceid><addsrcrecordid>eNqNUE1PwkAQ3RhNRPQ_bDhBYut-dD9K9AAE1ASDMZiU02bbbrUEKOy2B_-9WzDh6lzmZd57M5MHQA-jECNCH8bDyeLtPURtYYkpDwmVsQw5uwAdzAQKmIz4Jeh4GgURFck1uHFu7eVEEtkBo-W3gdNDo-uy2sGinwzgk2-rASx38OM41Rs4a3ZZCx1MPJ3068E9XHm08ugWXBV648zdX--Cz9l0OXkJ5ovn18loHmQRx3UQiRRpE8msyNNUG8biNNdRjoQQcYpEjHmGWMEIFYIikWWaaCwkYYJhkhsR0y7onfbubXVojKvVumqs_84pgiOOGBXIi4YnUWYr56wp1N6WW21_FEaqTUyNVZuYOiemjokpzrz58c-st6kt8y9zPvEP-y_MsWxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214605370</pqid></control><display><type>article</type><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Avanzi, Roberto M. ; Zannier, Umberto M.</creator><creatorcontrib>Avanzi, Roberto M. ; Zannier, Umberto M.</creatorcontrib><description>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1023/B:COMP.0000018136.23898.65</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><ispartof>Compositio mathematica, 2003-12, Vol.139 (3), p.263-295</ispartof><rights>2003 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X03100735/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27915,27916,55619</link.rule.ids></links><search><creatorcontrib>Avanzi, Roberto M.</creatorcontrib><creatorcontrib>Zannier, Umberto M.</creatorcontrib><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</description><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUE1PwkAQ3RhNRPQ_bDhBYut-dD9K9AAE1ASDMZiU02bbbrUEKOy2B_-9WzDh6lzmZd57M5MHQA-jECNCH8bDyeLtPURtYYkpDwmVsQw5uwAdzAQKmIz4Jeh4GgURFck1uHFu7eVEEtkBo-W3gdNDo-uy2sGinwzgk2-rASx38OM41Rs4a3ZZCx1MPJ3068E9XHm08ugWXBV648zdX--Cz9l0OXkJ5ovn18loHmQRx3UQiRRpE8msyNNUG8biNNdRjoQQcYpEjHmGWMEIFYIikWWaaCwkYYJhkhsR0y7onfbubXVojKvVumqs_84pgiOOGBXIi4YnUWYr56wp1N6WW21_FEaqTUyNVZuYOiemjokpzrz58c-st6kt8y9zPvEP-y_MsWxn</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Avanzi, Roberto M.</creator><creator>Zannier, Umberto M.</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200312</creationdate><title>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</title><author>Avanzi, Roberto M. ; Zannier, Umberto M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-47b0ae48cfdbbae559bda4d07779b07916c05f52377307cca2a178257512de793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avanzi, Roberto M.</creatorcontrib><creatorcontrib>Zannier, Umberto M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avanzi, Roberto M.</au><au>Zannier, Umberto M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2003-12</date><risdate>2003</risdate><volume>139</volume><issue>3</issue><spage>263</spage><epage>295</epage><pages>263-295</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1023/B:COMP.0000018136.23898.65</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2003-12, Vol.139 (3), p.263-295
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_214605370
source EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
title The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Equation%20f(X)%20=%20f(Y)%20in%20Rational%20Functions%20X%20=%20X(t),%20Y%20=%20Y(t)&rft.jtitle=Compositio%20mathematica&rft.au=Avanzi,%20Roberto%20M.&rft.date=2003-12&rft.volume=139&rft.issue=3&rft.spage=263&rft.epage=295&rft.pages=263-295&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1023/B:COMP.0000018136.23898.65&rft_dat=%3Cproquest_cross%3E1395227761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214605370&rft_id=info:pmid/&rft_cupid=10_1023_B_COMP_0000018136_23898_65&rfr_iscdi=true