The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)
We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2003-12, Vol.139 (3), p.263-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1023/B:COMP.0000018136.23898.65 |