The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t)

We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2003-12, Vol.139 (3), p.263-295
Hauptverfasser: Avanzi, Roberto M., Zannier, Umberto M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine all the complex polynomials f(X) such that, for two suitable distinct, nonconstant rational functions g(t) and h(t), the equality f(g(t)) = f(h(t)) holds. This extends former results of Tverberg, and is a contribution to the more general question of determining the polynomials f(X) over a number field K such that f(X) − λ has at least two distinct K-rational roots for infinitely many λ ∈ K.
ISSN:0010-437X
1570-5846
DOI:10.1023/B:COMP.0000018136.23898.65