Uniform distribution of the Steinitz invariants of quadratic and cubic extensions

It is shown that the Steinitz invariants of the cubic extensions of a number field are uniformly distributed in the class group when the cubic extensions are ordered by the ideal norm of their relative discriminants. This remains true even if the extensions are restricted by specifying their splitti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2006-01, Vol.142 (1), p.84-100
Hauptverfasser: Kable, Anthony C., Wright, David J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that the Steinitz invariants of the cubic extensions of a number field are uniformly distributed in the class group when the cubic extensions are ordered by the ideal norm of their relative discriminants. This remains true even if the extensions are restricted by specifying their splitting type at a finite number of places. The same statement is also proved for quadratic extensions.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X05001740