Best Sobolev Constants and Manifolds with Positive Scalar Curvature Metrics
We study the Yamabe invariant of manifolds which admit metrics of positive scalar curvature. Analysing 'best Sobolev constants' we give a technique to find positive lower bounds for the invariant. We apply these ideas to show that for any compact Riemannian manifold (Nn,g) of positive scal...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2001-10, Vol.20 (3), p.231 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Yamabe invariant of manifolds which admit metrics of positive scalar curvature. Analysing 'best Sobolev constants' we give a technique to find positive lower bounds for the invariant. We apply these ideas to show that for any compact Riemannian manifold (Nn,g) of positive scalar curvature there is a positive constant K =K(N, g), which depends only on (N, g), such that for any compact manifold Mm, the Yamabe invariant of Mm x Nnis no less than K times the invariant ofSn + m. We will find some estimates for the constant K in the case N =Sn. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1023/A:1012037030262 |