Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation

We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2009-02, Vol.62 (2), p.147-182
Hauptverfasser: Gekhtman, Michael, Nenciu, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 2
container_start_page 147
container_title Communications on pure and applied mathematics
container_volume 62
creator Gekhtman, Michael
Nenciu, Irina
description We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214275561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1623304971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-61f97c5bb56191b71d701f5c5ab843b4421ab7ae6e8f528977d7eaa92dc578773</originalsourceid><addsrcrecordid>eNp1kEFPwjAYhhujiYge_AeLiQcPhbZb1-2IREEDykHjsem6TgtjhbYL4q-3CnLz9OVLnvf5vrwAXGLUwwiRvlyJHkGE0iPQwShnEMWYHIMOQhjBOE3QKThzbh5WnGRxB0ynbe01HIulrr1ptGgi520rfWtVVBkb-Y8wdaO9ikpVGdk63bxHg6I2G-2_4ESUehGpdSu8Ns05OKlE7dTFfnbB6_3dy3AMJ8-jh-FgAmWc5xSmuMqZpEVBU5zjguGSIVxRSUWRJXGRJASLggmVqqyiJMsZK5kSIielpCxjLO6Cq513Zc26Vc7zuWltE05yghPCaBAH6GYHSWucs6riK6uXwm45RvynLB7K4r9lBfZ6LxROirqyopHaHQIE5UkaPglcf8dtdK22_wv5cDb4M8NdQjuvPg8JYRc8ZTGj_O1pxKcjnD7ezjKO42-FFoa1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214275561</pqid></control><display><type>article</type><title>Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation</title><source>Wiley Online Library All Journals</source><creator>Gekhtman, Michael ; Nenciu, Irina</creator><creatorcontrib>Gekhtman, Michael ; Nenciu, Irina</creatorcontrib><description>We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20255</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algebra ; Applied mathematics ; Difference and functional equations, recurrence relations ; Exact sciences and technology ; Finite differences and functional equations ; Fourier analysis ; Mathematical analysis ; Mathematical functions ; Mathematics ; Nonlinear equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Poisson distribution ; Polynomials ; Sciences and techniques of general use ; Special functions</subject><ispartof>Communications on pure and applied mathematics, 2009-02, Vol.62 (2), p.147-182</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-61f97c5bb56191b71d701f5c5ab843b4421ab7ae6e8f528977d7eaa92dc578773</citedby><cites>FETCH-LOGICAL-c3995-61f97c5bb56191b71d701f5c5ab843b4421ab7ae6e8f528977d7eaa92dc578773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20946528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Nenciu, Irina</creatorcontrib><title>Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc.</description><subject>Algebra</subject><subject>Applied mathematics</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Fourier analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Poisson distribution</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAYhhujiYge_AeLiQcPhbZb1-2IREEDykHjsem6TgtjhbYL4q-3CnLz9OVLnvf5vrwAXGLUwwiRvlyJHkGE0iPQwShnEMWYHIMOQhjBOE3QKThzbh5WnGRxB0ynbe01HIulrr1ptGgi520rfWtVVBkb-Y8wdaO9ikpVGdk63bxHg6I2G-2_4ESUehGpdSu8Ns05OKlE7dTFfnbB6_3dy3AMJ8-jh-FgAmWc5xSmuMqZpEVBU5zjguGSIVxRSUWRJXGRJASLggmVqqyiJMsZK5kSIielpCxjLO6Cq513Zc26Vc7zuWltE05yghPCaBAH6GYHSWucs6riK6uXwm45RvynLB7K4r9lBfZ6LxROirqyopHaHQIE5UkaPglcf8dtdK22_wv5cDb4M8NdQjuvPg8JYRc8ZTGj_O1pxKcjnD7ezjKO42-FFoa1</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Gekhtman, Michael</creator><creator>Nenciu, Irina</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200902</creationdate><title>Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation</title><author>Gekhtman, Michael ; Nenciu, Irina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-61f97c5bb56191b71d701f5c5ab843b4421ab7ae6e8f528977d7eaa92dc578773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Applied mathematics</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Fourier analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Poisson distribution</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gekhtman, Michael</creatorcontrib><creatorcontrib>Nenciu, Irina</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gekhtman, Michael</au><au>Nenciu, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2009-02</date><risdate>2009</risdate><volume>62</volume><issue>2</issue><spage>147</spage><epage>182</epage><pages>147-182</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20255</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2009-02, Vol.62 (2), p.147-182
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_214275561
source Wiley Online Library All Journals
subjects Algebra
Applied mathematics
Difference and functional equations, recurrence relations
Exact sciences and technology
Finite differences and functional equations
Fourier analysis
Mathematical analysis
Mathematical functions
Mathematics
Nonlinear equations
Numerical analysis
Numerical analysis. Scientific computation
Poisson distribution
Polynomials
Sciences and techniques of general use
Special functions
title Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Hamiltonian%20structure%20for%20the%20finite%20defocusing%20Ablowitz-Ladik%20equation&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Gekhtman,%20Michael&rft.date=2009-02&rft.volume=62&rft.issue=2&rft.spage=147&rft.epage=182&rft.pages=147-182&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20255&rft_dat=%3Cproquest_cross%3E1623304971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214275561&rft_id=info:pmid/&rfr_iscdi=true