Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation
We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2009-02, Vol.62 (2), p.147-182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.20255 |