Mapping Properties of the Laplacian in Sobolev Spaces of Forms on Complete Hyperbolic Manifolds
For a complete manifold M with constant negative curvature, we prove that the rough Laplacian [Delta]R defines topological isomorphisms in the scale of Sobolev spaces Hps(M) ofp-forms for all p, 0 < p < n. For the de Rham Laplacian [Delta] and M=\mathbb Hn, the Poincare hyperbolic space, this...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2004-04, Vol.25 (2), p.151-176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a complete manifold M with constant negative curvature, we prove that the rough Laplacian [Delta]R defines topological isomorphisms in the scale of Sobolev spaces Hps(M) ofp-forms for all p, 0 < p < n. For the de Rham Laplacian [Delta] and M=\mathbb Hn, the Poincare hyperbolic space, this is shown too for 0 < or =p< or =n,p[not =]n/2, p[not =] (n+ or - 1)/2. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1023/B:AGAG.0000018554.31037.23 |