A shallow-water approximation to the full water wave problem

We demonstrate that the system of the Green‐Naghdi equations as a two‐directional, nonlinearly dispersive wave model is a close approximation to the two‐dimensional full water wave problem. Based on the energy estimates and the proof of the well‐posedness for the Green‐Naghdi equations and the water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2006-09, Vol.59 (9), p.1225-1285
1. Verfasser: Li, Yi A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that the system of the Green‐Naghdi equations as a two‐directional, nonlinearly dispersive wave model is a close approximation to the two‐dimensional full water wave problem. Based on the energy estimates and the proof of the well‐posedness for the Green‐Naghdi equations and the water wave problem, we compare solutions of the two systems, showing that without restrictions on the wave amplitude, any two solutions of the two systems remain close, at least in some finite time within the shallow‐water regime, provided that their initial data are close in the Banach space Hs × Hs+1 for some s > $3 \over 2$. As a consequence, we show that if the depth of the water compared with the wavelength is sufficiently small, the two solutions exist for the same finite time using the uniformly bounded energies defined in the paper. © 2006 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.20148