On the Floer homology of cotangent bundles

This paper concerns Floer homology for periodic orbits and for a Lagrangian intersection problem on the cotangent bundle T* M of a compact orientable manifold M. The first result is a new L∞ estimate for the solutions of the Floer equation, which allows us to deal with a larger—and more natural—clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2006-02, Vol.59 (2), p.254-316
Hauptverfasser: Abbondandolo, Alberto, Schwarz, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns Floer homology for periodic orbits and for a Lagrangian intersection problem on the cotangent bundle T* M of a compact orientable manifold M. The first result is a new L∞ estimate for the solutions of the Floer equation, which allows us to deal with a larger—and more natural—class of Hamiltonians. The second and main result is a new construction of the isomorphism between the Floer homology and the singular homology of the free loop space of M in the periodic case, or of the based loop space of M in the Lagrangian intersection problem. The idea for the construction of such an isomorphism is to consider a Hamiltonian that is the Legendre transform of a Lagrangian on T M and to construct an isomorphism between the Floer complex and the Morse complex of the classical Lagrangian action functional on the space of W1,2 free or based loops on M. © 2005 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.20090