Missense Mutations That Inactivate the Aspergillus nidulans nrtA Gene Encoding a High-Affinity Nitrate Transporter

The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2005-04, Vol.169 (4), p.1369
Hauptverfasser: Kinghorn, James R, Sloan, Joan, Kana'n, Ghassan J M, DaSilva, Edisio R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class of nitrate permeases, a collection of chemically induced mutations in the nrtA gene encoding a 12-transmembrane domain, high-affinity nitrate transporter from the eukaryote Aspergillus nidulans was isolated and characterized. This mutational analysis, coupled with protein alignments, demonstrates the utility of the approach to predicting peptide motifs and individual residues important for the movement of nitrate across the membrane. These include the highly conserved nitrate signature motif (residues 166-173) in Tm 5, the conserved charged residues Arg87 (Tm 2) and Arg368 (Tm 8), as well as the aromatic residue Phe47 (Tm 1), all within transmembrane helices. No mutations were observed in the large central loop (Lp 6/7) between Tm 6 and Tm 7. Finally, the study of a strain with a conversion of Trp481 (Tm 12) to a stop codon suggests that all 12 transmembrane domains and/or the C-terminal tail are required for membrane insertion and/or stability of NrtA. [PUBLICATION ABSTRACT]
ISSN:0016-6731
1943-2631