Systemic Oxygen-Free Radical Production in Iron-Loaded Mice
Although iron is an essential element for normal cell metabolism, in excess quantities it is highly cytotoxic and lethal. In fact, acute iron poisoning is a leading cause of overdose mortality in young children. Hereditary hemochromatosis, a disorder of iron metabolism, is currently the most prevale...
Gespeichert in:
Veröffentlicht in: | Western journal of nursing research 2000-12, Vol.22 (8), p.927-935 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although iron is an essential element for normal cell metabolism, in excess quantities it is highly cytotoxic and lethal. In fact, acute iron poisoning is a leading cause of overdose mortality in young children. Hereditary hemochromatosis, a disorder of iron metabolism, is currently the most prevalent genetic disorder in the world, which results in organ failure and premature mortality. Hence, an enhanced understanding of its pathogenesis is critical for providing safe and effective nursing care to affected individuals and their families. Although the exact mechanism of iron’s toxicity is not known, it was hypothesized that chronic iron loading would result in increased tissue (heart, liver, and spleen) concentrations of iron and increased free radical production in a murine model (n = 20). Our results show that chronic iron loading results in highly significant dose-dependent increases in tissue concentrations of iron and systemic free radical generation (p < 0.001). |
---|---|
ISSN: | 0193-9459 1552-8456 |
DOI: | 10.1177/01939450022044881 |