Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids

In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2018-01, Vol.14
1. Verfasser: Frejlich, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Transform. Groups 13 (2008), 727-755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681-721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121-169].
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2018.124