Noise-induced temporal regularity and signal amplification in an optomechanical system with parametric instability
Noise usually has an unwelcome influence on system performance. For instance, noise inevitably affects the low-frequency mechanical freedom in optomechanical experiments. However, we investigate here the beneficial effects of thermal noise on a basic optomechanical system with parametric instability...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Noise usually has an unwelcome influence on system performance. For instance, noise inevitably affects the low-frequency mechanical freedom in optomechanical experiments. However, we investigate here the beneficial effects of thermal noise on a basic optomechanical system with parametric instability. In a regime near parametric instability, it is found that thermal noise in the mechanical freedom can sustain long-term quasi-coherent oscillations when the system would otherwise remain in the equilibrium state. In an overlapping regime of parametric instability and bistability, intermittent switching between a self-sustained oscillating state and an equilibrium can be induced by adding a certain amount of noise. When a subthreshold periodic signal is applied to the mechanics, the switching between the self-sustained oscillations and the equilibrium exhibits good periodicity at a rate that is synchronized to the signal frequency, resulting in a significant amplification of the signal. Our results deepen the understanding of the interplay between optomechanical nonlinearity and noise and provide theoretical guidance for experimental observation of noise-induced beneficial phenomena in optomechanics. |
---|---|
ISSN: | 2331-8422 |