Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications

The application of deep learning techniques resulted in remarkable improvement of machine learning models. In this paper provides detailed characterizations of deep learning models used in many Facebook social network services. We present computational characteristics of our models, describe high pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Park, Jongsoo, Naumov, Maxim, Basu, Protonu, Deng, Summer, Kalaiah, Aravind, Khudia, Daya, Law, James, Malani, Parth, Malevich, Andrey, Nadathur, Satish, Pino, Juan, Schatz, Martin, Sidorov, Alexander, Sivakumar, Viswanath, Tulloch, Andrew, Wang, Xiaodong, Wu, Yiming, Yuen, Hector, Diril, Utku, Dzhulgakov, Dmytro, Hazelwood, Kim, Jia, Bill, Jia, Yangqing, Lin, Qiao, Rao, Vijay, Rotem, Nadav, Yoo, Sungjoo, Smelyanskiy, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of deep learning techniques resulted in remarkable improvement of machine learning models. In this paper provides detailed characterizations of deep learning models used in many Facebook social network services. We present computational characteristics of our models, describe high performance optimizations targeting existing systems, point out their limitations and make suggestions for the future general-purpose/accelerated inference hardware. Also, we highlight the need for better co-design of algorithms, numerics and computing platforms to address the challenges of workloads often run in data centers.
ISSN:2331-8422