Quasisymmetric geometry of the Julia sets of McMullen maps
We study the quasisymmetric geometry of the Julia sets of McMullen maps f λ ( z ) = z m + λ/ z ℓ , where λ ∈ ℂ {0} and ℓ and m are positive integers satisfying 1/ℓ+1/ m < 1. If the free critical points of f λ are escaped to the infinity, we prove that the Julia set J λ of f λ is quasisymmetricall...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2018-12, Vol.61 (12), p.2283-2298 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the quasisymmetric geometry of the Julia sets of McMullen maps
f
λ
(
z
) =
z
m
+ λ/
z
ℓ
, where λ ∈ ℂ {0} and ℓ and
m
are positive integers satisfying 1/ℓ+1/
m
< 1. If the free critical points of
f
λ
are escaped to the infinity, we prove that the Julia set
J
λ
of
f
λ
is quasisymmetrically equivalent to either a standard Cantor set, a standard Cantor set of circles or a round Sierpiński carpet (which is also standard in some sense). If the free critical points are not escaped, we give a suffcient condition on λ such that
J
λ
is a Sierpiński carpet and prove that most of them are quasisymmetrically equivalent to some round carpets. In particular, there exist infinitely renormalizable rational maps whose Julia sets are quasisymmetrically equivalent to the round carpets. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-016-9228-x |