Ricci Flow on a Class of Noncompact Warped Product Manifolds

We consider the Ricci flow on noncompact n + 1 -dimensional manifolds M with symmetries, corresponding to warped product manifolds R × T n with flat fibres. We show longtime existence and that the Ricci flow solution is of type III, i.e. the curvature estimate | Rm | ( p , t ) ≤ C / t for some C >...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2018-12, Vol.28 (4), p.3424-3457
1. Verfasser: Marxen, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Ricci flow on noncompact n + 1 -dimensional manifolds M with symmetries, corresponding to warped product manifolds R × T n with flat fibres. We show longtime existence and that the Ricci flow solution is of type III, i.e. the curvature estimate | Rm | ( p , t ) ≤ C / t for some C > 0 and all p ∈ M , t ∈ ( 1 , ∞ ) holds. We also show that if M has finite volume, the solution collapses, i.e. the injectivity radius converges uniformly to 0 (as t → ∞ ) while the curvatures stay uniformly bounded, and furthermore, the solution converges to a lower dimensional manifold. Moreover, if the ( n -dimensional) volumes of hypersurfaces coming from the symmetries of M are uniformly bounded, the solution converges locally uniformly to a flat cylinder after appropriate rescaling and pullback by a family of diffeomorphisms. Corresponding results are also shown for the normalized (i.e. volume preserving) Ricci flow.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-017-9964-3