Development of One-Part Alkali-Activated Ceramic/Slag Binders Containing Recycled Ceramic Aggregates

AbstractAlkali-activated binders have received substantial attention due to their excellent potential in enabling the reuse and recycling of industrial solid wastes and by-products. One-part or just-add-water alkali-activated binders are an approach to reduce the negative aspects of using an alkali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials in civil engineering 2019-02, Vol.31 (2)
Hauptverfasser: Abdollahnejad, Z, Luukkonen, T, Mastali, M, Kinnunen, P, Illikainen, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractAlkali-activated binders have received substantial attention due to their excellent potential in enabling the reuse and recycling of industrial solid wastes and by-products. One-part or just-add-water alkali-activated binders are an approach to reduce the negative aspects of using an alkali solution during the preparation of traditional two-part alkali-activated binders. The work aims to utilize the maximum content of ceramic wastes in alkali-activated blast-furnace slag/ceramic binders. The ground granulated blast-furnace slag was partially replaced [10%, 20%, and 30% in weight (wt.)%] by two types of ceramic wastes (porcelain and raw; i.e., fired and unfired). Moreover, the coarse particle size of porcelain ceramic waste was used as recycled aggregate. The specimens were cured under two different curing regimes: (1) sealing with plastic; and (2) using thermal curing conditions for 3 h in 60°C after demolding and then sealing until the test day. Mechanical testing and microstructural analysis were used to characterize the effects of different curing regimes and different ceramic sources. The results showed that replacing ground granulated blast-furnace slag with all types of ceramic wastes reduced the compressive strength; this reduction was mainly caused by reduction of the calcium content. This strength loss was also governed by the ceramic waste type, curing regime type, and curing duration. The microstructural analysis indicated that some cracks formed between the ceramic waste particles and the matrix. Moreover, the microscopic analysis indicated the use of preheating could eliminate cracking.
ISSN:0899-1561
1943-5533
DOI:10.1061/(ASCE)MT.1943-5533.0002608