Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2019-07, Vol.63 (5), p.956-986
Hauptverfasser: Kulikov, Alexander S., Podolskii, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 986
container_issue 5
container_start_page 956
container_title Theory of computing systems
container_volume 63
creator Kulikov, Alexander S.
Podolskii, Vladimir V.
description We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum value of k for which there exists a MAJ k ∘ MAJ k circuit that has high correlation with the majority of n bits is equal to Θ( n 1/2 ). We then show that for a randomized MAJ k ∘ MAJ k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n 2/3 + o (1) . We show a worst case lower bound: if a MAJ k ∘ MAJ k circuit computes the majority of n bits correctly on all inputs, then k ≥ n 13/19 + o (1) .
doi_str_mv 10.1007/s00224-018-9900-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139365774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139365774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5e3e9de1fbd1a182f535988667a132377d44e7f19e7322cd23e9706b2ff459fa3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmPwANwqcQ44cdo0R1TYhlTEBc5R1iajE2tLkmra29NRpJ042bK_35Y-Qm4Z3DMA-RAAOBcUWE6VAqB4RmZMIFIQCs5_e04FpnBJrkLYAgDmADNSFt2uH2LTbpJXs-18Ew_J-pAUXRuiaWPyZPv4eVoVja-GJoZk34zjstsnC9PSpk2WJtpwTS6c-Qr25q_Oycfi-b1Y0fJt-VI8lrRCxiJNLVpVW-bWNTMs5y7FVOV5lknDkKOUtRBWOqasRM6rmo-4hGzNnROpcgbn5G662_vue7Ah6m03-HZ8qTlDhVkqpRgpNlGV70Lw1uneNzvjD5qBPkrTkzQ9StNHaRrHDJ8yYWTbjfWny_-HfgDg4G3R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139365774</pqid></control><display><type>article</type><title>Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates</title><source>SpringerLink Journals (MCLS)</source><source>Business Source Complete</source><creator>Kulikov, Alexander S. ; Podolskii, Vladimir V.</creator><creatorcontrib>Kulikov, Alexander S. ; Podolskii, Vladimir V.</creatorcontrib><description>We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum value of k for which there exists a MAJ k ∘ MAJ k circuit that has high correlation with the majority of n bits is equal to Θ( n 1/2 ). We then show that for a randomized MAJ k ∘ MAJ k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n 2/3 + o (1) . We show a worst case lower bound: if a MAJ k ∘ MAJ k circuit computes the majority of n bits correctly on all inputs, then k ≥ n 13/19 + o (1) .</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-018-9900-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Computation ; Computer Science ; Lower bounds ; Special Issue on Theoretical Aspects of Computer Science (STACS 2017) ; Theory of Computation</subject><ispartof>Theory of computing systems, 2019-07, Vol.63 (5), p.956-986</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Theory of Computing Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-5e3e9de1fbd1a182f535988667a132377d44e7f19e7322cd23e9706b2ff459fa3</cites><orcidid>0000-0001-7154-138X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-018-9900-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-018-9900-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kulikov, Alexander S.</creatorcontrib><creatorcontrib>Podolskii, Vladimir V.</creatorcontrib><title>Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum value of k for which there exists a MAJ k ∘ MAJ k circuit that has high correlation with the majority of n bits is equal to Θ( n 1/2 ). We then show that for a randomized MAJ k ∘ MAJ k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n 2/3 + o (1) . We show a worst case lower bound: if a MAJ k ∘ MAJ k circuit computes the majority of n bits correctly on all inputs, then k ≥ n 13/19 + o (1) .</description><subject>Circuits</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Lower bounds</subject><subject>Special Issue on Theoretical Aspects of Computer Science (STACS 2017)</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFOwzAMhiMEEmPwANwqcQ44cdo0R1TYhlTEBc5R1iajE2tLkmra29NRpJ042bK_35Y-Qm4Z3DMA-RAAOBcUWE6VAqB4RmZMIFIQCs5_e04FpnBJrkLYAgDmADNSFt2uH2LTbpJXs-18Ew_J-pAUXRuiaWPyZPv4eVoVja-GJoZk34zjstsnC9PSpk2WJtpwTS6c-Qr25q_Oycfi-b1Y0fJt-VI8lrRCxiJNLVpVW-bWNTMs5y7FVOV5lknDkKOUtRBWOqasRM6rmo-4hGzNnROpcgbn5G662_vue7Ah6m03-HZ8qTlDhVkqpRgpNlGV70Lw1uneNzvjD5qBPkrTkzQ9StNHaRrHDJ8yYWTbjfWny_-HfgDg4G3R</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kulikov, Alexander S.</creator><creator>Podolskii, Vladimir V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7154-138X</orcidid></search><sort><creationdate>20190701</creationdate><title>Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates</title><author>Kulikov, Alexander S. ; Podolskii, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5e3e9de1fbd1a182f535988667a132377d44e7f19e7322cd23e9706b2ff459fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuits</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Lower bounds</topic><topic>Special Issue on Theoretical Aspects of Computer Science (STACS 2017)</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, Alexander S.</creatorcontrib><creatorcontrib>Podolskii, Vladimir V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, Alexander S.</au><au>Podolskii, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>63</volume><issue>5</issue><spage>956</spage><epage>986</epage><pages>956-986</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><abstract>We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum value of k for which there exists a MAJ k ∘ MAJ k circuit that has high correlation with the majority of n bits is equal to Θ( n 1/2 ). We then show that for a randomized MAJ k ∘ MAJ k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n 2/3 + o (1) . We show a worst case lower bound: if a MAJ k ∘ MAJ k circuit computes the majority of n bits correctly on all inputs, then k ≥ n 13/19 + o (1) .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-018-9900-3</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7154-138X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2019-07, Vol.63 (5), p.956-986
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_2139365774
source SpringerLink Journals (MCLS); Business Source Complete
subjects Circuits
Computation
Computer Science
Lower bounds
Special Issue on Theoretical Aspects of Computer Science (STACS 2017)
Theory of Computation
title Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20Majority%20by%20Constant%20Depth%20Majority%20Circuits%20with%20Low%20Fan-in%20Gates&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Kulikov,%20Alexander%20S.&rft.date=2019-07-01&rft.volume=63&rft.issue=5&rft.spage=956&rft.epage=986&rft.pages=956-986&rft.issn=1432-4350&rft.eissn=1433-0490&rft_id=info:doi/10.1007/s00224-018-9900-3&rft_dat=%3Cproquest_cross%3E2139365774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139365774&rft_id=info:pmid/&rfr_iscdi=true