Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2019-07, Vol.63 (5), p.956-986
Hauptverfasser: Kulikov, Alexander S., Podolskii, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum value of k for which there exists a MAJ k ∘ MAJ k circuit that has high correlation with the majority of n bits is equal to Θ( n 1/2 ). We then show that for a randomized MAJ k ∘ MAJ k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n 2/3 + o (1) . We show a worst case lower bound: if a MAJ k ∘ MAJ k circuit computes the majority of n bits correctly on all inputs, then k ≥ n 13/19 + o (1) .
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-018-9900-3