Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
We study the following computational problem: for which values of k , the majority of n bits MAJ n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ k ∘ MAJ k . We observe that the minimum...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2019-07, Vol.63 (5), p.956-986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following computational problem: for which values of
k
, the majority of
n
bits MAJ
n
can be computed with a depth two formula whose each gate computes a majority function of at most
k
bits? The corresponding computational model is denoted by MAJ
k
∘ MAJ
k
. We observe that the minimum value of
k
for which there exists a MAJ
k
∘ MAJ
k
circuit that has high correlation with the majority of
n
bits is equal to Θ(
n
1/2
). We then show that for a randomized MAJ
k
∘ MAJ
k
circuit computing the majority of
n
input bits with high probability for every input, the minimum value of
k
is equal to
n
2/3 +
o
(1)
. We show a worst case lower bound: if a MAJ
k
∘ MAJ
k
circuit computes the majority of
n
bits correctly on all inputs, then
k
≥
n
13/19 +
o
(1)
. |
---|---|
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-018-9900-3 |