Finding better active learners for faster literature reviews

Literature reviews can be time-consuming and tedious to complete. By cataloging and refactoring three state-of-the-art active learning techniques from evidence-based medicine and legal electronic discovery, this paper finds and implements FASTREAD, a faster technique for studying a large corpus of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical software engineering : an international journal 2018-12, Vol.23 (6), p.3161-3186
Hauptverfasser: Yu, Zhe, Kraft, Nicholas A., Menzies, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Literature reviews can be time-consuming and tedious to complete. By cataloging and refactoring three state-of-the-art active learning techniques from evidence-based medicine and legal electronic discovery, this paper finds and implements FASTREAD, a faster technique for studying a large corpus of documents, combining and parametrizing the most efficient active learning algorithms. This paper assesses FASTREAD using datasets generated from existing SE literature reviews (Hall, Wahono, Radjenović, Kitchenham et al.). Compared to manual methods, FASTREAD lets researchers find 95% relevant studies after reviewing an order of magnitude fewer papers. Compared to other state-of-the-art automatic methods, FASTREAD reviews 20–50% fewer studies while finding same number of relevant primary studies in a systematic literature review.
ISSN:1382-3256
1573-7616
DOI:10.1007/s10664-017-9587-0