A Note on Edge Weightings Inducing Proper Vertex Colorings

An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2018-11, Vol.34 (6), p.1269-1277
Hauptverfasser: Limbach, Anna M., Scheidweiler, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1277
container_issue 6
container_start_page 1269
container_title Graphs and combinatorics
container_volume 34
creator Limbach, Anna M.
Scheidweiler, Robert
description An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈ V . One corresponding coloring parameter is χ f ( G ) , the f -neighbor-distinguishing index. It is the smallest value k such that a k -weighting induces a vertex coloring of G via f . In literature, several functions f , e.g., sums and products, and different additional constraints for the colorings have been studied. Thereby a lot of related coloring parameters arise. In this note, we introduce a class of functions, so-called dispersing functions. We prove bounds for three classes of coloring parameters, which are induced by edge weightings via arbitrary dispersing functions.
doi_str_mv 10.1007/s00373-018-1933-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139134460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139134460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-52b00963e881a5980b5e2b7de03c9f433cd54653c87436957b704ff8d3170ac83</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA5-jMTrKbeCul1kJRD34cw35ka0vdrMkW9L93lxU8eZqBee8N78fYJcI1AmQ3EYAyEoBaoCES6ohNUJISyqA8ZhMwiP0VzSk7i3EHAAolTNjtjD_4znHf8EW1cfzNbTfv3bbZRL5qqkPZb_wp-NYF_upC57743O99GATn7KTO99Fd_M4pe7lbPM_vxfpxuZrP1qJMUt0JlRQAJiWnNebKaCiUS4qsckClqSVRWSmZKip1Jik1KisykHWtK8IM8lLTlF2NuW3wnwcXO7vzh9D0L22CZJCkTKFX4agqg48xuNq2YfuRh2-LYAdEdkRke0R2QGRV70lGT2yHRi78Jf9v-gEN0GZh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139134460</pqid></control><display><type>article</type><title>A Note on Edge Weightings Inducing Proper Vertex Colorings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Limbach, Anna M. ; Scheidweiler, Robert</creator><creatorcontrib>Limbach, Anna M. ; Scheidweiler, Robert</creatorcontrib><description>An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈ V . One corresponding coloring parameter is χ f ( G ) , the f -neighbor-distinguishing index. It is the smallest value k such that a k -weighting induces a vertex coloring of G via f . In literature, several functions f , e.g., sums and products, and different additional constraints for the colorings have been studied. Thereby a lot of related coloring parameters arise. In this note, we introduce a class of functions, so-called dispersing functions. We prove bounds for three classes of coloring parameters, which are induced by edge weightings via arbitrary dispersing functions.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-018-1933-5</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Apexes ; Combinatorics ; Dispersion ; Engineering Design ; Graph coloring ; Mathematics ; Mathematics and Statistics ; Original Paper ; Parameters ; Weighting</subject><ispartof>Graphs and combinatorics, 2018-11, Vol.34 (6), p.1269-1277</ispartof><rights>Springer Japan KK, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-52b00963e881a5980b5e2b7de03c9f433cd54653c87436957b704ff8d3170ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-018-1933-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-018-1933-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Limbach, Anna M.</creatorcontrib><creatorcontrib>Scheidweiler, Robert</creatorcontrib><title>A Note on Edge Weightings Inducing Proper Vertex Colorings</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈ V . One corresponding coloring parameter is χ f ( G ) , the f -neighbor-distinguishing index. It is the smallest value k such that a k -weighting induces a vertex coloring of G via f . In literature, several functions f , e.g., sums and products, and different additional constraints for the colorings have been studied. Thereby a lot of related coloring parameters arise. In this note, we introduce a class of functions, so-called dispersing functions. We prove bounds for three classes of coloring parameters, which are induced by edge weightings via arbitrary dispersing functions.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Dispersion</subject><subject>Engineering Design</subject><subject>Graph coloring</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Weighting</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA5-jMTrKbeCul1kJRD34cw35ka0vdrMkW9L93lxU8eZqBee8N78fYJcI1AmQ3EYAyEoBaoCES6ohNUJISyqA8ZhMwiP0VzSk7i3EHAAolTNjtjD_4znHf8EW1cfzNbTfv3bbZRL5qqkPZb_wp-NYF_upC57743O99GATn7KTO99Fd_M4pe7lbPM_vxfpxuZrP1qJMUt0JlRQAJiWnNebKaCiUS4qsckClqSVRWSmZKip1Jik1KisykHWtK8IM8lLTlF2NuW3wnwcXO7vzh9D0L22CZJCkTKFX4agqg48xuNq2YfuRh2-LYAdEdkRke0R2QGRV70lGT2yHRi78Jf9v-gEN0GZh</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Limbach, Anna M.</creator><creator>Scheidweiler, Robert</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181101</creationdate><title>A Note on Edge Weightings Inducing Proper Vertex Colorings</title><author>Limbach, Anna M. ; Scheidweiler, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-52b00963e881a5980b5e2b7de03c9f433cd54653c87436957b704ff8d3170ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Dispersion</topic><topic>Engineering Design</topic><topic>Graph coloring</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limbach, Anna M.</creatorcontrib><creatorcontrib>Scheidweiler, Robert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limbach, Anna M.</au><au>Scheidweiler, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Edge Weightings Inducing Proper Vertex Colorings</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>1269</spage><epage>1277</epage><pages>1269-1277</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈ V . One corresponding coloring parameter is χ f ( G ) , the f -neighbor-distinguishing index. It is the smallest value k such that a k -weighting induces a vertex coloring of G via f . In literature, several functions f , e.g., sums and products, and different additional constraints for the colorings have been studied. Thereby a lot of related coloring parameters arise. In this note, we introduce a class of functions, so-called dispersing functions. We prove bounds for three classes of coloring parameters, which are induced by edge weightings via arbitrary dispersing functions.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-018-1933-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2018-11, Vol.34 (6), p.1269-1277
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2139134460
source SpringerLink Journals - AutoHoldings
subjects Apexes
Combinatorics
Dispersion
Engineering Design
Graph coloring
Mathematics
Mathematics and Statistics
Original Paper
Parameters
Weighting
title A Note on Edge Weightings Inducing Proper Vertex Colorings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Edge%20Weightings%20Inducing%20Proper%20Vertex%20Colorings&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Limbach,%20Anna%20M.&rft.date=2018-11-01&rft.volume=34&rft.issue=6&rft.spage=1269&rft.epage=1277&rft.pages=1269-1277&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-018-1933-5&rft_dat=%3Cproquest_cross%3E2139134460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139134460&rft_id=info:pmid/&rfr_iscdi=true