A Note on Edge Weightings Inducing Proper Vertex Colorings
An edge k -weighting of a graph G = ( V , E ) is a function l : E → { 1 , ⋯ , k } . For v ∈ V we denote by S ( v ) the multiset of weights on edges incident to v . We say that a weighting l induces a vertex coloring via a function f if f ( S ( v ) ) ≠ f ( S ( u ) ) for all adjacent vertices u , v ∈...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2018-11, Vol.34 (6), p.1269-1277 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An edge
k
-weighting of a graph
G
=
(
V
,
E
)
is a function
l
:
E
→
{
1
,
⋯
,
k
}
.
For
v
∈
V
we denote by
S
(
v
) the multiset of weights on edges incident to
v
. We say that a weighting
l
induces a vertex coloring via a function
f
if
f
(
S
(
v
)
)
≠
f
(
S
(
u
)
)
for all adjacent vertices
u
,
v
∈
V
.
One corresponding coloring parameter is
χ
f
(
G
)
,
the
f
-neighbor-distinguishing index. It is the smallest value
k
such that a
k
-weighting induces a vertex coloring of
G
via
f
. In literature, several functions
f
, e.g., sums and products, and different additional constraints for the colorings have been studied. Thereby a lot of related coloring parameters arise. In this note, we introduce a class of functions, so-called dispersing functions. We prove bounds for three classes of coloring parameters, which are induced by edge weightings via arbitrary dispersing functions. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-018-1933-5 |