On Probability and Moment Inequalities for Supermartingales and Martingales
The probability inequality for sum Sn=[summation operator]j=1nXj is proved under the assumption that the sequence Sk, k=$\overline{1,n}$, forms a supermartingale. This inequality is stated in terms of the tail probabilities P(Xj>y) and conditional variances of the random variables Xj, j=$\overlin...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2003-10, Vol.79 (1-2), p.35 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The probability inequality for sum Sn=[summation operator]j=1nXj is proved under the assumption that the sequence Sk, k=$\overline{1,n}$, forms a supermartingale. This inequality is stated in terms of the tail probabilities P(Xj>y) and conditional variances of the random variables Xj, j=$\overline{1,n}$. The well-known Burkholder moment inequality is deduced as a simple consequence. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1023/A:1025814306357 |