The Theory of Linear G-Difference Equations
We introduce the notion of difference equations defined on a structured set. The symmetry group of the structure determines the set of difference operators. All main notions in the theory of difference equations are introduced as invariants of the action of the symmetry group. Linear equations are m...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 1999-06, Vol.57 (2), p.165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of difference equations defined on a structured set. The symmetry group of the structure determines the set of difference operators. All main notions in the theory of difference equations are introduced as invariants of the action of the symmetry group. Linear equations are modules over the skew group algebra, solutions are morphisms relating a given equation to other equations, symmetries of an equation are module endomorphisms, and conserved structures are invariants in the tensor algebra of the given equation. We show that the equations and their solutions can be described through representations of the isotropy group of the symmetry group of the underlying set. We relate our notion of difference equation and solutions to systems of classical difference equations and their solutions and show that out notions include these as a special case. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1023/A:1006274113240 |