Efficiently Charting RDF

We propose a visual query language for interactively exploring large-scale knowledge graphs. Starting from an overview, the user explores bar charts through three interactions: class expansion, property expansion, and subject/object expansion. A major challenge faced is performance: a state-of-the-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Kalinsky, Oren, Mishali, Oren, Hogan, Aidan, Etsion, Yoav, Kimelfeld, Benny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a visual query language for interactively exploring large-scale knowledge graphs. Starting from an overview, the user explores bar charts through three interactions: class expansion, property expansion, and subject/object expansion. A major challenge faced is performance: a state-of-the-art SPARQL engine may require tens of minutes to compute the multiway join, grouping and counting required to render a bar chart. A promising alternative is to apply approximation through online aggregation, trading precision for performance. However, state-of-the-art online aggregation algorithms such as Wander Join have two limitations for our exploration scenario: (1) a high number of rejected paths slows the convergence of the count estimations, and (2) no unbiased estimator exists for counts under the distinct operator. We thus devise a specialized algorithm for online aggregation that augments Wander Join with exact partial computations to reduce the number of rejected paths encountered, as well as a novel estimator that we prove to be unbiased in the case of the distinct operator. In an experimental study with random interactions exploring two large-scale knowledge graphs, our algorithm shows a clear reduction in error with respect to computation time versus Wander Join.
ISSN:2331-8422