Flow forming of thin-walled precision shells

Flow forming is an innovative form of cold and chipless metal forming process, used for the production of high precision, thin-walled, net-shaped cylindrical components. During this process, the length of a thick walled tube, commonly known as a preform, is increased with a simultaneous decrease in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2018-12, Vol.43 (12), p.1-16, Article 208
Hauptverfasser: Podder, Bikramjit, Banerjee, Prabas, Ramesh Kumar, K, Hui, Nirmal Baran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow forming is an innovative form of cold and chipless metal forming process, used for the production of high precision, thin-walled, net-shaped cylindrical components. During this process, the length of a thick walled tube, commonly known as a preform, is increased with a simultaneous decrease in the thickness of the preform without any change in the internal diameter. Forming of the preform is carried out with the help of one or more rollers over a rotating mandrel. By a pre-determined amount of thickness reduction in one or more number of forming passes, the work material is plastically deformed in the radial direction by compression and made to flow in an axial direction. The desired geometry of the workpiece is achieved when the outer diameter and the wall of the preform are decreased, and the available material volume is forced to flow longitudinally over the mandrel. Over the last three and a half decades the flow forming technology has undergone several remarkable advancements. The versatility of the process makes it possible to produce a wide variety of axi-symmetric, nearer to the net-shape tubular parts with a complex profile using minimum tooling changes. In this review article, process details of flow forming have been elaborated. The current state-of-the-art process has been described, and future developments regarding research and industrial applications are also reviewed.
ISSN:0256-2499
0973-7677
DOI:10.1007/s12046-018-0979-7