Lineaments on the Surface of the Consolidated Material of the Comet 67P/Churyumov−Gerasimenko Nucleus

Morphologic analysis of the fragments (500 × 500 pixels) of images of comet 67P/Churyumov− Gerasimenko obtained with the OSIRIS camera for 18 regions, where the consolidated material is exposed on the surface, has been carried out. In terms of resolution, the images form a series from 0.04 to 1.29 m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar system research 2018-11, Vol.52 (6), p.505-517
Hauptverfasser: Basilevsky, A. T., Skorov, Yu. V., Hviid, S. F., Krasilnikov, S. S., Mall, U., Keller, H. U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Morphologic analysis of the fragments (500 × 500 pixels) of images of comet 67P/Churyumov− Gerasimenko obtained with the OSIRIS camera for 18 regions, where the consolidated material is exposed on the surface, has been carried out. In terms of resolution, the images form a series from 0.04 to 1.29 m/pixel; consequently, the areas covered by these fragments vary from 400 to ~400000 m 2 . In all of the regions, lineaments resembling tension fractures—several dozens of structures per region—are seen; and their number scarcely changes when passing from high-resolution images to lower-resolution ones. It is clear that relatively small lineaments cease to be reliably distinguished when the image resolution worsens, but the largest and well-defined ones remain observable, while the number of larger lineaments grows proportionally to the survey area increasing. Undoubtedly, this is an observational effect, which was demonstrated by examples with an artificially worsened resolution. However, on the other hand, this means that the tension fractures of the consolidated nucleus material represent a hierarchic population of smaller (meters long) to larger (decameters and longer) features. The lineaments seen in the analyzed fragments of images were counted, their lengths were measured, and the spacings (the mean distances between lineaments) and, from them, the depths of penetration of fractures into the nucleus material were estimated. It has been shown that the mean length of lineaments within each studied region depends on its area (which here correlates with the image resolution) and the depths of fracture penetration into the nucleus body depends on the mean length of lineaments. Both dependences are close to a power law. In the images of four regions covering the areas from 100000 to 400000 m 2 with a resolution of 0.66−1.29 m/pixel, the structures that look like layering or sheet jointing are seen in addition to fracture lineaments. The tension fractures are apparently formed due to seasonal and diurnal variations of the temperature, while the nature of the formation of the layer-like structures is not yet fully understood.
ISSN:0038-0946
1608-3423
DOI:10.1134/S0038094618060011