Bayesian hierarchical regression models for detecting QTLs in plant experiments
Quantitative trait loci (QTL) mapping is a growing field in statistical genetics. In plants, QTL detection experiments often feature replicates or clones within a specific genetic line. In this work, a Bayesian hierarchical regression model is applied to simulated QTL data and to a dataset from the...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2008-07, Vol.35 (7), p.799-808 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantitative trait loci (QTL) mapping is a growing field in statistical genetics. In plants, QTL detection experiments often feature replicates or clones within a specific genetic line. In this work, a Bayesian hierarchical regression model is applied to simulated QTL data and to a dataset from the Arabidopsis thaliana plants for locating the QTL mapping associated with cotyledon opening. A conditional model search strategy based on Bayesian model averaging is utilized to reduce the computational burden. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664760802005910 |