Bayesian hierarchical regression models for detecting QTLs in plant experiments

Quantitative trait loci (QTL) mapping is a growing field in statistical genetics. In plants, QTL detection experiments often feature replicates or clones within a specific genetic line. In this work, a Bayesian hierarchical regression model is applied to simulated QTL data and to a dataset from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2008-07, Vol.35 (7), p.799-808
Hauptverfasser: Boone, Edward L., Simmons, Susan J., Bao, Haikun, Stapleton, Ann E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative trait loci (QTL) mapping is a growing field in statistical genetics. In plants, QTL detection experiments often feature replicates or clones within a specific genetic line. In this work, a Bayesian hierarchical regression model is applied to simulated QTL data and to a dataset from the Arabidopsis thaliana plants for locating the QTL mapping associated with cotyledon opening. A conditional model search strategy based on Bayesian model averaging is utilized to reduce the computational burden.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664760802005910