Traditional chinese medicine ingredients Rosa damascena and Poria cocos promote phagocytosis and a dendritic cell phenotype in THP-1 cells

Background: Rosa damascena and Poria cocos are ingredients commonly used in Traditional Chinese Medicine. R. damascena is used to promote blood circulation as well as liver and stomach function, while P. cocos is used to eliminate dampness and enhance spleen function. Objective: The objective of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacognosy Magazine 2018-10, Vol.14 (58), p.567-571
Hauptverfasser: Roloff, Samantha, Scholten, Jeffrey, Chuang, Jennifer, Hu, Chun, Fast, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Rosa damascena and Poria cocos are ingredients commonly used in Traditional Chinese Medicine. R. damascena is used to promote blood circulation as well as liver and stomach function, while P. cocos is used to eliminate dampness and enhance spleen function. Objective: The objective of the study is to investigate possible mechanisms by which R. damascena and P. cocos may promote immune function. Materials and Methods: Phagocytosis and dendritic cell (DC) surface marker expression assays were used to evaluate the effect of R. damascena and P. cocos extracts on human THP-1 monocytic leukemia cell biology. Results: R. damascena and P. cocos extracts both enhanced phagocytosis of latex beads by THP-1 cells, and when combined, phagocytosis was enhanced to a level greater than what might be expected by adding the individual phagocytosis responses together. In addition, both extracts enhanced maturation of THP-1 cells into a DC phenotype as measured by increased surface expression of the costimulatory molecules CD14, CD40, CD80, and CD86. Conclusion: These results suggest that Rosa damascena and P. cocos may promote monocyte phagocytosis and then stimulate differentiation of the cells into DCs thereby bridging innate and adaptive immune responses. Abbreviations used: AKT: Protein kinase B; AP-1: Activator protein-1; Bcl2: B cell lymphoma-2; CD: Cluster of differentiation; COX-2: Cyclooxygenase-2; DC: Dendritic cell; EGFR: Epidermal growth factor receptor; FOXO1: Forkhead box protein-1; GM-CSF: Granulocyte/macrophage colony stimulating factor; HLA: Human leukocyte antigen; HPLC: High-performance liquid chromatography; IL-1β: Interleukin-1β; IL-4: Interleukin-4; M1: Classically activated macrophage; M2: Alternatively activated macrophage; MAPK: Mitogen-activated protein kinase; NFκB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NLR Family Pyrin Domain Containing 3; ϕ: Phagocytic index; p53: Tumor protein p53; PARP: Poly (ADP-ribose) polymerase; PMA: Phorbol 12-myristate 13-acetate; PRR: Pattern recognition receptor; STAT: Signal transducer and activator of transcription SD: Standard deviation; Syk: Spleen tyrosine kinase; TCM: Traditional Chinese Medicine.
ISSN:0973-1296
0976-4062
DOI:10.4103/pm.pm_564_17