Law of the iterated logarithm for random graphs
A milestone in probability theory is the law of the iterated logarithm (LIL), proved by Khinchin and independently by Kolmogorov in the 1920s, which asserts that for iid random variables {ti}i=1∞ with mean 0 and variance 1 In this paper we prove that LIL holds for various functionals of random graph...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-01, Vol.54 (1), p.3-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A milestone in probability theory is the law of the iterated logarithm (LIL), proved by Khinchin and independently by Kolmogorov in the 1920s, which asserts that for iid random variables {ti}i=1∞ with mean 0 and variance 1
In this paper we prove that LIL holds for various functionals of random graphs and hypergraphs models. We first prove LIL for the number of copies of a fixed subgraph H. Two harder results concern the number of global objects: perfect matchings and Hamiltonian cycles. The main new ingredient in these results is a large deviation bound, which may be of independent interest. For random k‐uniform hypergraphs, we obtain the Central Limit Theorem and LIL for the number of Hamilton cycles. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20784 |