Autonomous flight and cooperative control for reconstruction using aerial robots powered by smartphones

Advances in consumer electronics products and the technology seen in personal computers, digital cameras, and smartphones phones have led to the price/performance ratio of sensors and processors falling dramatically over the last decade. In particular, many consumer products are packaged with small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2018-09, Vol.37 (11), p.1341-1358
Hauptverfasser: Loianno, Giuseppe, Mulgaonkar, Yash, Brunner, Chris, Ahuja, Dheeraj, Ramanandan, Arvind, Chari, Murali, Diaz, Serafin, Kumar, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in consumer electronics products and the technology seen in personal computers, digital cameras, and smartphones phones have led to the price/performance ratio of sensors and processors falling dramatically over the last decade. In particular, many consumer products are packaged with small cameras, gyroscopes, and accelerometers, all sensors that are needed for autonomous robots in GPS-denied environments. The low mass and small form factor make them particularly well suited for autonomous flight with small flying robots. In this work, we present the first fully autonomous smartphone-based system for quadrotors. We show how multiple quadrotors can be stabilized and controlled to achieve autonomous flight in indoor buildings with application to smart homes, search and rescue, monitoring construction projects, and developing models for architecture design. In our work, the computation for sensing and control runs on an off-the-shelf smartphone, with all the software functionality embedded in a smartphone app. No additional sensors or processors are required for autonomous flight. We are also able to use multiple, coordinated autonomous aerial vehicles to improve the efficiency of our mission. In our framework, multiple vehicles are able to plan safe trajectories avoiding inter-robot collisions, while concurrently building in a cooperative manner a three-dimensional map of the environment. The work allows any consumer with any number of robots equipped with smartphones to autonomously drive a team of quadrotor robots, even without GPS, by downloading our app and cooperatively build three-dimensional maps.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364918774136