Low-Temperature Noise Performance of SuperSpec and Other Developments on the Path to Deployment

SuperSpec is a compact on-chip spectrometer operating at mm and sub-mm wavelengths which will enable the construction of sensitive multibeam spectrometers. SuperSpec employs a filter bank architecture, consisting of lithographically patterned niobium superconducting microstrip mm-wave resonators. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018-12, Vol.193 (5-6), p.1024-1032
Hauptverfasser: McGeehan, R., Barry, P. S., Shirokoff, E., Bradford, C. M., Che, G., Glenn, J., Gordon, S., Hailey-Dunsheath, S., Hollister, M., Kovács, A., LeDuc, H. G., Mauskopf, P., McKenney, C., Reck, T., Redford, J., Tucker, C., Turner, J., Walker, S., Wheeler, J., Zmuidzinas, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SuperSpec is a compact on-chip spectrometer operating at mm and sub-mm wavelengths which will enable the construction of sensitive multibeam spectrometers. SuperSpec employs a filter bank architecture, consisting of lithographically patterned niobium superconducting microstrip mm-wave resonators. The power admitted by each resonator is detected by a titanium nitride lumped-element kinetic inductance detector (KID) with resonant frequency from 100 to 200 MHz. We present a characterization of the detector noise performance down to 10 mK measured in a dark setting. We report a device NEP of 2.7 × 10 - 18 W Hz - 1 / 2 at 210 mK, which is below the expected photon noise level at high-altitude ground-based observatories. The NEP decreases to a constant value of approximately 7.0 × 10 - 19 W Hz - 1 / 2 below 130 mK. The white noise is well modeled by thermal generation–recombination noise (GR noise) down to 130 mK and a noise floor at low temperatures. Moreover, the addition of low-pass coaxial filters further reduces the noise floor to achieve an NEP of 5.7 × 10 - 19 W Hz - 1 / 2 below 100 mK. We discuss a photolithographic technique to adjust KID resonances that results in an f 0 designed versus measured scatter of 1.7 × 10 - 5 , which will allow a significant reduction in resonators lost to clashes in full-scale designs. Finally, we present a demonstration of a new ROACH-2-based readout system operating below 500 MHz and show preliminary data indicating the suitability of this system for future highly multiplexed KID arrays.
ISSN:0022-2291
1573-7357
DOI:10.1007/s10909-018-2061-6