Non-adiabatic mass correction to the rovibrational states of molecules: Numerical application for the H2+ molecular ion
General transformation expressions of the second-order non-adiabatic Hamiltonian of the atomic nuclei, including the kinetic-energy correction terms, are derived upon the change from laboratory-fixed Cartesian coordinates to general curvilinear coordinate systems commonly used in rovibrational compu...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-11, Vol.149 (19) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | General transformation expressions of the second-order non-adiabatic Hamiltonian of the atomic nuclei, including the kinetic-energy correction terms, are derived upon the change from laboratory-fixed Cartesian coordinates to general curvilinear coordinate systems commonly used in rovibrational computations. The kinetic-energy or so-called “mass-correction” tensor elements are computed with the stochastic variational method and floating explicitly correlated Gaussian functions for the H2+ molecular ion in its ground electronic state. {Further numerical applications for the 4He2+ molecular ion are presented in the forthcoming paper, Paper II [E. Mátyus, J. Chem. Phys. 149, 194112 (2018)]}. The general, curvilinear non-adiabatic kinetic energy operator expressions are used in the examples, and non-adiabatic rovibrational energies and corrections are determined by solving the rovibrational Schrödinger equation including the diagonal Born–Oppenheimer as well as the mass-tensor corrections. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5050401 |