Non linear modeling of three-dimensional reinforced and fiber concrete structures
Under the effect of the ascending loading, the behavior of reinforced concrete structures is rather non linear. Research in industry and science aims to extend forward the use of non-linear calculation of fiber concrete for structural parts such as columns, veils and pious, as the fiber concrete is...
Gespeichert in:
Veröffentlicht in: | Frontiers of Structural and Civil Engineering 2018-12, Vol.12 (4), p.439-453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under the effect of the ascending loading, the behavior of reinforced concrete structures is rather non linear. Research in industry and science aims to extend forward the use of non-linear calculation of fiber concrete for structural parts such as columns, veils and pious, as the fiber concrete is more ductile behavior then the classical concrete behavior. The formulation of the element has been established for modeling the nonlinear behavior of elastic structures in three dimensions, based on the displacement method. For the behavior of concrete and fiber concrete compressive and tensile strength (stress-strain) the uniaxial formulation is used. For steel bi-linear relationship is used. The approach is based on the discretization of the cross section trapezoidal tables. Forming the stiffness matrix of the section, the integral of the surface is calculated as the sum of the integrals on each of the cutting trapezoids. To integrate on the trapeze we have adopted the type of Simpson integration scheme. |
---|---|
ISSN: | 2095-2430 2095-2449 |
DOI: | 10.1007/s11709-017-0433-7 |